

XFP 1310 nm Small Form Factor Module 10 Gigabit Pluggable Transceiver Compatible with XFP MSA Rev. 3.1

V23833-Fx105-B001 V23833-Fx105-B002

Preliminary Data Sheet

Features

Standards

- Compatible with IEEE 802.3ae[™]-2002
- Compatible with Fibre Channel 10GFC Draft 3.5
- Compatible with ITU-T G.693 11/2001
- Compatible with XFP MSA Rev. 3.1
- Compatible with Telcordia GR-253-CORE

Optical

- IEEE Ethernet: Serial 1310 nm 10GBASE-LR
- T11 Fibre Channel: Serial 1310 nm 1200-SM-LL-L
- ITU-T G.693: VSR2000-2R1
- Telcordia: SR1
- Transmission distance 2 m up to 10 km
- Uncooled directly modulated Distributed Feedback (DFB) laser at 1310 nm
- According to XFP MSA Rev. 3.1
- · LC connector, single mode fiber
- Full duplex transmission mode

Ordering Information

Part Number	Chassis/Signal Grounding Concept	Standard
V23833-F0105-B001	Separated	Ethernet/Fibre Channel
V23833-F9105-B001	Separated	Multi-Protocol
V23833-F0105-B002	Common	Ethernet/Fibre Channel
V23833-F9105-B002	Common	Multi-Protocol

Applications

Monitoring and Control

- · Laser safety shut off
- Supply voltage 5 V / 3.3 V / 1.8 V
- · Transmit power
- Received power RSSI
- Module temperature
- · Laser bias current
- Tx DIS
- Mod_NR
- Mod_DeSel
- Interrupt
- Mod ABS
- P_Down/RST
- Rx_Los

Mechanical

- Color coded blue for 1310 nm
- Belly-to-belly applications
- Latching mechanism with low insertion force

Electrical

- · Hot pluggable
- Power supply 5 V / 3.3 V / 1.8 V
- Total power consumption: < 3.5 W max.
- XFI electrical interface
- External reference clock (transmit data synchronization B/64)
- Management and control via 2-wire interface
- 30 pin connector, 0.8 mm pitch

Applications

- 10GBE, 10GFC, OC-192/STM-64 and G.709 transmission systems for short range
- Integration on PCI card, with eventually mid-board mounting
- Belly-to-belly for high density applications
- Enterprise and campus network applications
- Storage applications
- · Backplane and switch applications
- · Aggregation point for lower date rate
- XFP evaluation kit V23833-F9909-Z001 available upon request

Pin Configuration

Pin Configuration

1 GND 2 V _{EE5} 3 MOD_DESEL 4 INTERRUPT 5 TX_DIS 6 V _{CC5} 7 GND 8 V _{CC3} 9 V _{CC3}	30 GND 29 TD+ 28 TD- 27 GND 26 GND 25 REFCLK- 24 REFCLK+ 23 GND 22 V _{CC2}	
10 SCL 11 SDA 12 MOD_ABS 13 MOD_NR 14 RX_LOS 15 GND	21 P_DOWN/RST 20 V _{CC2} 19 GND 18 RD+ 17 RD- 16 GND	
Bottom of Board (As viewed through top of board)	Top of Board	File: 2304

Figure 1 XFP Transceiver Electrical Pad Layout

Pin Configuration

Connector Pin Assignments

	•
Pin No.	Signal Name
1	GND
2	V_{EE5}
3	MOD_DESEL
4	INTERRUPT
5	TX_DIS
6	$V_{\rm CC5}$
7	GND
8	V_{CC3}
9	V_{CC3}
10	SCL
11	SDA
12	MOD_ABS
13	MOD_NR
14	RX_LOS
15	GND

Pin No.	Signal Name
30	GND
29	TD+
28	TD-
27	GND
26	GND
25	REFCLK-
24	REFCLK+
23	GND
22	$V_{\rm CC2}$
21	P_DOWN
20	$V_{\rm CC2}$
19	GND
18	RD+
17	RD-
16	GND

Pin Configuration

Pin Description

Signal Name	Level	I/O	Pin No.	Description
				Description
Management a			1	Madula Danalasti udana (1.2 allaun
MOD_DESEL	LVTTL	I	3	Module De-select: when "L" allows the module to respond to 2-wire serial interface command. "H" active
INTERRUPT	LVTTL	0	4	Interrupt: indicates presence of an important condition which can be read on the 2-wire serial interface. "H" active
TX_DIS	LVTTL	I	5	Transmitter Disable: transmitter laser source is turned off. "H" active
SCL	LVTTL	I	10	2-wire Interface Clock
SDA	LVTTL	I	11	2-wire Interface Data
MOD_ABS	LVTTL	0	12	Module Absent: indicating the modules not present. "H" active
MOD_NR	LVTTL	0	13	Module not ready: module operational fault
RX_LOS	LVTTL	0	14	Receiver Loss Of Signal Indicator
P_DOWN	LVTTL	I	21	Power Saving Mode: places the module in the stand-by condition. Active "H". During the falling edge set the module reset
Transmit Func	tions	<u> </u>		
TD-	CML	I	28	Transmitter Inverted Data Input
TD+	CML	I	29	Transmitter Not-inverted Data Input
Receive Functi	ons			
RD-	CML	0	17	Receiver Data Output Inverted
RD+	CML	0	18	Receiver Data Output Not-inverted
REFCLK+	PECL	I	24	Reference Clock Not-inverted Input
REFCLK-	PECL	I	25	Reference Clock Inverted Input
DC Power				
GND	0 V	_	1,7,15,16,19, 23,26,27,30	Ground connection for both signal and chassis on the module
$\overline{V_{\text{CC5}}}$	+5 V	I	6	Positive power supply, nominal
$\overline{V_{ exttt{CC3}}}$	+3.3 V	I	8,9	Positive power supply, nominal
$V_{\rm CC2}$	+1.8 V	I	20,22	Positive power supply, nominal

Description

Description

System Block Diagram

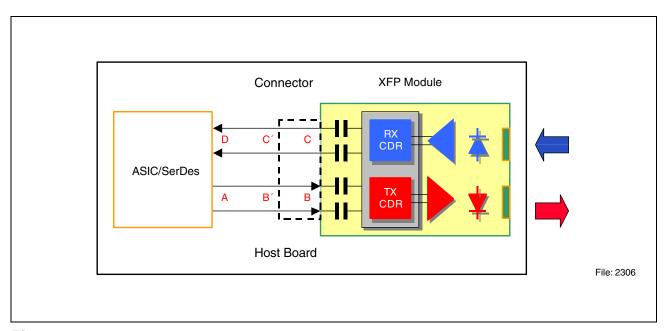


Figure 2

Optical Interface Standard Specifications

- IEEE 802.3ae[™]-2002 clause 52, 10GBASE-LR
- Fibre Channel 10GFC Draft 3.5, 1200-SM-LL-L
- ITU-T G.693: VSR2000-2R1
- Telcordia: SR1
- XFP MSA Rev. 3.1

Fiber Type		Operating Range (meters) ¹⁾
B1.1 SMF	10	2 to 10,000
B1.3 SMF	10	2 to 10,000

Operating range as defined by IEEE and Fibre Channel standards. Longer reach possible depending upon link implementation. A loopback connector is supported.

Electrical Interface Standard Specifications

- IEEE 802.3ae[™]-2002 clause 45 & 47
- XFP MSA Rev. 3.1

Description

Environment: Thermal Management Recommendations

Operating air inlet temperature: 0°C - 50°C

Operating Airflow: 200 LFM (1.5 m/s)

Operating Humidity: 85% RH non-condensing Maximum operating case temperature is 70°C as defined by UL 1950.

Module can withstand and operate within specification with case temperature of 75°C for up to 96 hrs/yr. Transceiver requires airflow parallel to cooling fins. Maximum airflow required per XFP MSA is 3 m/s.

Fibers and Connectors

The transceiver LC features a duplex receptacle and is designed for single mode LC cables, 0° polished end face (PC).

30-pin Connector

The module interface connector is a 30-pin, printed circuit board edge connection with a 0.8 mm pitch. The appropriate mating connector for the customer PCB is a 30-pin SMT, dual row, right angled, edge connector, 0.8 mm pitch (TycoAmp part number 788862C or equivalent).

Cage/Heatsink Requirement

The cage/heatsink assembly required to mount the XFP module is defined by the MSA.

Description

Regulatory Compliance

Feature	Standard	Comments
ESD: Electrostatic Discharge to the Electrical Pins (HBM)	EIA/JESD22-A114-B (MIL-STD 883D Method 3015.7)	Class 1a (> 500 V)
Immunity: Against Electrostatic Discharge (ESD) to the Module Receptacle	EN 61000-4-2 IEC 61000-4-2	Discharges ranging from ±2 kV to ±15 kV to the front end / faceplate / receptacle cause no damage to module (under recommended conditions).
Immunity: Against Radio Frequency Electromagnetic Field	EN 61000-4-3 IEC 61000-4-3	With a field strength of 3 V/m, noise frequency ranges from 10 MHz to 2 GHz. No effect on module performance between the specification limits.
Emission: Electromagnetic Interference (EMI)	FCC 47 CFR Part 15, Class B EN 55022 Class B CISPR 22	Noise frequency range: 30 MHz to 40 GHz Radiated emission does not exceed specified limits when measured inside a shielding enclosure with MSA conform cutout.

Technical Data

Absolute Maximum Ratings

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Storage Ambient Temperature ¹⁾	T_{S}	-20	85	°C
Operating Ambient Temperature ^{1) 2)}	T_{A}	0	50	°C
Operating Case Temperature ^{1) 2)}	T_{C}	0	80	°C
Supply Voltage +5.0 V	V_5	0	6	V
Supply Voltage +3.3 V	V_3	0	4	V
Supply Voltage +1.8 V	$V_{\sf aps}$	0	2	V
Static Discharge Voltage, All Pins	ST _d	-500	500	V
Average Receive Optical Power	Rx _{P max}		1.5	dBm

¹⁾ Non condensing.

Exceeding any one of these values may permanently destroy the device.

Recommended Operating Conditions

Parameter	Symbol		Value	Values	
		min.	typ.	max.	
Operating Case Temperature ^{1) 2)}	T_{C}	0		70	°C
Transceiver Total Power Consumption	P		2.5	3.5	W
Supply Voltage +5.0 V	$V_{\rm CC5}$	4.75	5	5.25	٧
Supply Current +5.0 V	$I_{\rm CC5}$			t.b.d.	mA
Supply Voltage +3.3 V	$V_{\rm CC3}$	3.14	3.3	3.47	٧
Supply Current +3.3 V	$I_{\rm CC3}$			t.b.d.	mA
Supply Voltage +1.8 V	$V_{ m CC\ aps}$	1.71	1.8	1.89	٧
Supply Current +1.8 V	I _{CC aps}			t.b.d.	mA

With specified airflow (see "Environment: Thermal Management Recommendations").

²⁾ With specified airflow (see "Environment: Thermal Management Recommendations").

²⁾ Worst case thermal location (see **Figure 15**).

Optical Characteristics

Parameter	Symbol		Value	S	Unit
		min.	typ.	max.	
Transmitter	1	1	-	'	1
Launch Power in OMA minus TDP	$P_{O ext{-}OMA}$	-6.2			dBm
Average Launch Power	P_{O-Avg}	-8.2	-1	0.5	dBm
Center Wavelength Range	$\lambda_{\text{C-Tx}}$	1290	1310	1330	nm
Spectral Width (-20 dB)	σ_{l}		0.5	0.6	nm
Side Mode Suppression Ratio	SMSR	30			dB
Extinction Ratio	ER	3.5	5		dB
Relative Intensity Noise ₁₂ OMA	RIN			-128	dB/Hz
Optical Modulation Amplitude (OMA)	OMA	-5.2			dBm
Transmitter and Dispersion Penalty	TDP			3.2	dB
Average Launch Power of OFF Transmitter	$P_{O\text{-}OFF}$			-30	dBm
Optical Return Loss Tolerance	ORL _T			12	dB
Transmitter Reflectance	REF _{Tx}			-12	dB
Eye Mask Definition	Ac	cording to	IEEE and	Fibre Chan	nel
Receiver					
Stressed Receiver Sensitivity	P_{IN-S}			-10.3	dBm
Sensitivity in OMA ¹⁾	P_{IN}			-12.6	dBm
Average Receive Power	P_{IN-max}			0.5	dBm
Loss Of Signal Assert Level	P_{LOSa}		-17	-13	dBm
Loss Of Signal Hysteresis	P_{LOSh}	1	2	4	dB
Receiver Reflectance	REF _{Rx}			-12	dB
Center Wavelength Range	$\lambda_{\text{C-Rx}}$	1260		1355	nm

¹⁾ Receiver sensitivity, which is defined for an ideal input signal is informative only.

Electrical DC Characteristics

Parameter	Symbol		Value	s	Unit	
		min.	typ.	max.		
3.3 V CMOS I/O DC Character (Management, Logic and Mor		ts)		·	·	
External Pull-up Resistor for Open Drain	R_{pullup}	10		22	kΩ	
Output High Voltage ¹⁾	V_{oh}	2.4		3.5	V	
Output Low Voltage ¹⁾	V_{ol}			0.4	V	
Input High Voltage	V_{ih}			2	V	
Input Low Voltage	V_{il}	0		0.8	V	
Input Pull-up Current ²⁾	$I_{\sf pd}$	-10	0	10	μΑ	
LVPECL I/O Characteristics (REFCLK+/-)		·	·	·		
Differential Input Voltage (pk-pk) ³⁾	V_{in_diff}	400		2000	mV p-p	
XFI I/O DC Characteristics (TD+/-; RD+/-)	•			<u>'</u>		
Differential Input Amplitude (pk-pk) ⁴⁾	TD+/-	240		1640	mV p-p diff	
Differential Output Amplitude (pk-pk) ⁵⁾	RD+/-	680		1700	mV p-p diff	

 $R_{\rm pull-up}$ = 10 k Ω to 3.3 V. $V_{\rm in}$ = 3.3 V.

³⁾ AC coupled in transceiver.

AC coupled input at host board.

⁵⁾ AC coupled output at host board.

Electrical AC Characteristics

Symbol		Values	es	
	min.	typ.	max.	
				·
TD+/-	9.95	10.3125	10.75	Gbit/s
TD _{tol}	-500		500	ppm
Z_{IN}	80	100	120	Ω
S ₁₁	8			dB
T _{SKEWIN}		t.b.d.		ps
TJ_{TD}			0.61	UI pp
TJ_{TD}			0.2	UI pp
				·
RD+/-	9.95	10.3125	10.75	Gbit/s
RD _{tol}	-100		100	ppm
$t_{\rm r},t_{\rm f}$	24			ps
T _{SKEWOUT}		t.b.d.		ps
Z_{OUT}	80	100	120	Ω
S ₂₂	8			dB
TJ_RD			0.34	UI
DJ_RD			0.18	UI
ics				
f_{REF}		164.1328		MHz
f_{REF}		164.3554		MHz
f_{TOLREF}	-100		100	ppm
t_{W}	40		60	%
$t_{\rm r},\ t_{\rm f}$	200		1250	ps
	$TD+/ TD_{tol}$ Z_{IN} $ S_{11} $ T_{SKEWIN} TJ_{TD} TJ_{TD} TJ_{TD} TJ_{TD} TJ_{TD} $T_{SKEWOUT}$ $T_{SKEWOUT}$ $T_{S_{22}}$	$TD+/-$ 9.95 TD_{tol} -500 Z_{IN} 80 $IS_{11}I$ 8 T_{JTD} III_{JTD} <	min. typ. $TD+/-$ 9.95 10.3125 TD_{tol} -500 -500 Z_{IN} 80 100 $ S_{11} $ 8 1.b.d. TJ_{TD} 1.b.d. 1.0 TJ_{TD} 10.3125 10.3125 $RD+/-$ 9.95 10.3125 RD_{tol} -100 1.b.d. $IT_{SKEWOUT}$ 1.b.d. 1.0 $IT_{SKEWOUT}$ 80 100 $IS_{22}I$ 8 100 $IT_{IT_{IN}}$ 1.0 1.0	$\begin{array}{ c c c c c c }\hline {min.} & {typ.} & {max.} \\ \hline {TD+/-} & 9.95 & 10.3125 & 10.75 \\ \hline {TD}_{tol} & -500 & 500 \\ \hline {Z}_{IN} & 80 & 100 & 120 \\ \hline { S_{11} } & 8 & & \\ \hline {T}_{SKEWIN} & t.b.d. & \\ \hline {TJ}_{TD} & 0.61 \\ \hline {TJ}_{TD} & 0.2 \\ \hline \hline {RD+/-} & 9.95 & 10.3125 & 10.75 \\ \hline {RD}_{tol} & -100 & 100 \\ \hline {t}_{r}, t_{f} & 24 & & \\ \hline {T}_{SKEWOUT} & t.b.d. & \\ \hline {Z}_{OUT} & 80 & 100 & 120 \\ \hline { S_{22} } & 8 & & \\ \hline {TJ}_{RD} & 0.34 \\ \hline {DJ}_{RD} & 0.18 \\ \hline {ics} & & & \\ \hline {f}_{REF} & 164.3554 \\ \hline {f}_{TOLREF} & -100 & 100 \\ \hline {t}_{W} & 40 & 60 \\ \hline \end{array}$

Electrical AC Characteristics (cont'd)

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
3.3 V CMOS I/O AC Character (SDA; SCL)	ristics for I ² (C Signals	}	'	,
SCL Clock Frequency	$f_{\sf SCL}$	0		400	kHz
SCL Period Low	t_{LOW}	1.3			μs
SCL Period High	t_{HIGH}	0.6			μs
Bus Free Time ⁸⁾	t_{BUF}	1.3			μs
Start Condition Setup Time	t _{SU_START}	0.6			μs
Stop Condition Setup Time	$t_{\sf SU_STOP}$	0.6			μs
Start Condition Hold Time	t _{H_START}	0.6			μs
Data Hold Time	t_{H_DATA}	0			μs
Data Setup Time	t _{SU_DATA}	100			ns
SDA and SCL Rise and Fall Time	$t_{\rm r},t_{\rm f}$			300	ns

¹⁰⁰ MHz - 5.5 GHz above 5.5 GHz see XFP MSA 3.1.

²⁾ Not defined at crossing point.

³⁾ Per XFP MSA 3.1 table 17, 1 UI = 96.97 ps.

⁴⁾ 20%, 80%.

⁵⁾ Per XFP MSA 3.1 table 19, 1 UI = 96.97 ps.

^{6) 10} GBE data rate.

⁷⁾ 10 GFC data rate.

⁸⁾ Between stop and start condition.

Timing Parameters for XFP Management

Parameter	Symbol	Values		Unit
		min.	max.	
TX_DIS Assert Time ¹⁾	t_off		10	μs
TX_DIS Negate Time ²⁾	IS Negate Time ²⁾ t_on 2			ms
Time to Initialize ³⁾ t_init			300	ms
INTERRUPT Assert Delay ⁴⁾	ITERRUPT Assert Delay ⁴⁾ Interrupt_on		200	ms
INTERRUPT Negate Delay ⁵⁾	Interrupt_off		500	μs
P_DOWN/RST Assert Delay ⁶⁾	P_Down/RST_on	T_on 100		μs
MOD_NR Assert Delay ⁷⁾	Mod_nr_on	1		ms
MOD_NR Negate Delay®	_NR Negate Delay ⁸⁾		1	ms
P_DOWN Reset Time9)		10		μs
RX_LOS Assert Delay ¹⁰⁾	t_loss_on		100	μs
RX_LOS Negate Delay ¹¹⁾	t_loss_off		100	μs

¹⁾ Rising edge of TX_DIS to fall of output signal below 10% of nominal.

Falling edge of TX_DIS to rise of output signal above 90% of nominal.

From power on or hot plug after supply or from falling edge of P_DOWN/RST.

⁴⁾ From occurrence of the condition triggering INTERRUPT.

⁵⁾ From clear on read INTERRUPT flags.

⁶⁾ From power down initiation.

⁷⁾ From occurrence of fault to assertion of MOD_NR.

From clearance of signal to negation of MOD_NR.

⁹⁾ Min. length of P_DOWN assert to initiate reset.

¹⁰⁾ From occurrence of loss of signal to assertion of RX_LOS.

¹¹⁾ From occurrence of presence of signal to negation of RX_LOS.

Eye Safety

Eye Safety

This laser based single mode transceiver is a Class 1 product. It complies with IEC 60825-1/A2: 2001 and FDA performance standards for laser products (21 CFR 1040.10 and 1040.11) except for deviations pursuant to Laser Notice 50, dated July 26, 2001.

CLASS 1 LASER PRODUCT

To meet laser safety requirements the transceiver shall be operated within the Absolute Maximum Ratings.

Note: All adjustments have been made at the factory prior to shipment of the devices. No maintenance or alteration to the device is required.

Tampering with or modifying the performance of the device will result in voided product warranty.

Failure to adhere to the above restrictions could result in a modification that is considered an act of "manufacturing", and will require, under law, recertification of the modified product with the U.S. Food and Drug Administration (ref. 21 CFR 1040.10 (i)).

Laser Emission Data

Wavelength	1310 nm	
Maximum total output power	15.6 mW / 11.9 dBm	
(as defined by IEC: 7 mm aperture at 14 mm distance)		
Beam divergence (full angle) / NA (half angle)	11° / 0.1 rad	

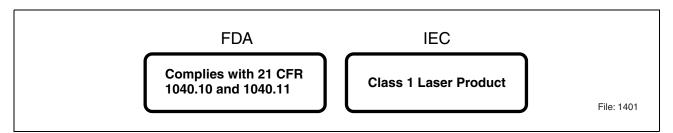


Figure 3 Required Labels

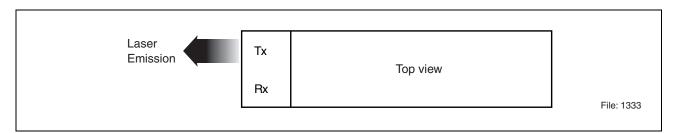


Figure 4 Laser Emission

Application Notes

Host Board Layouts

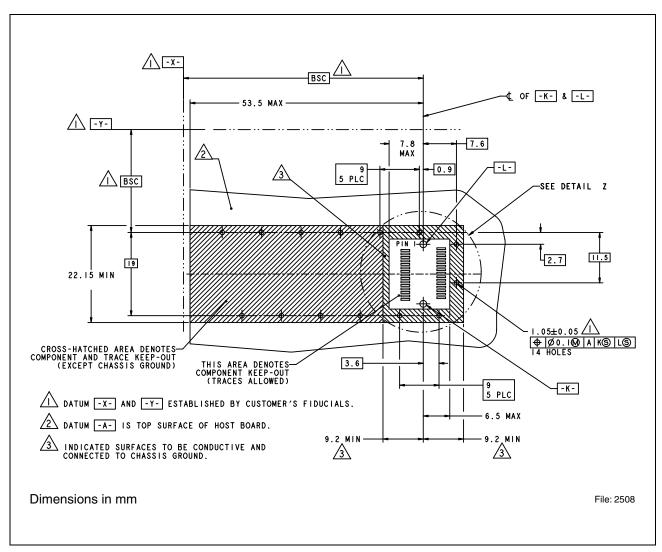


Figure 5 XFP Host Board Mechanical Layout

Detail Z see Figure 6.

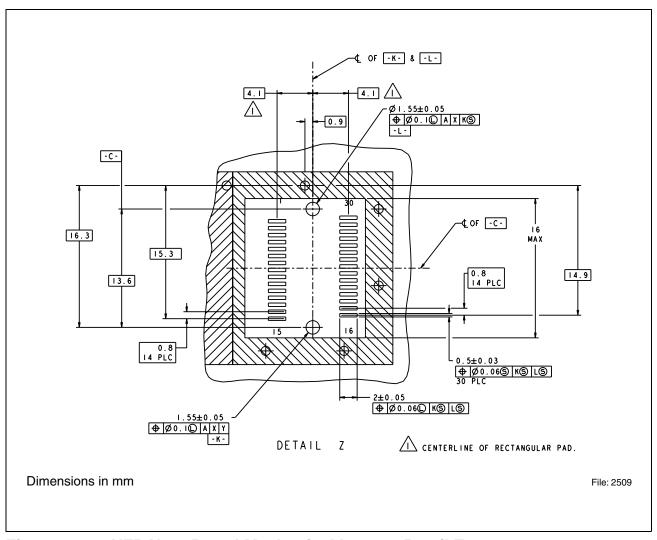


Figure 6 XFP Host Board Mechanical Layout, Detail Z



Figure 7 Recommended Single Sided Bezel Design

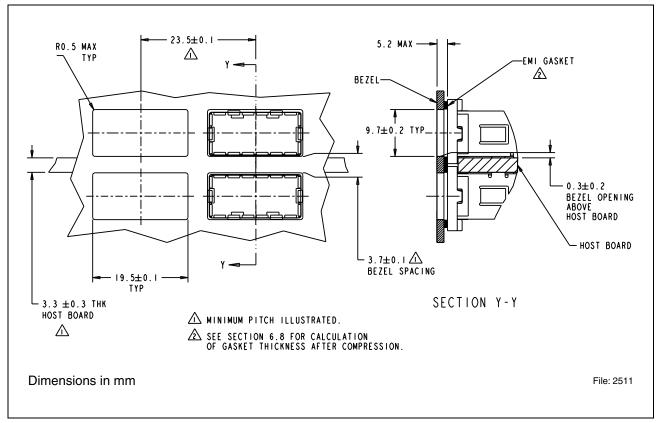


Figure 8 Recommended Double Sided Mounting Bezel Design

Mechanical

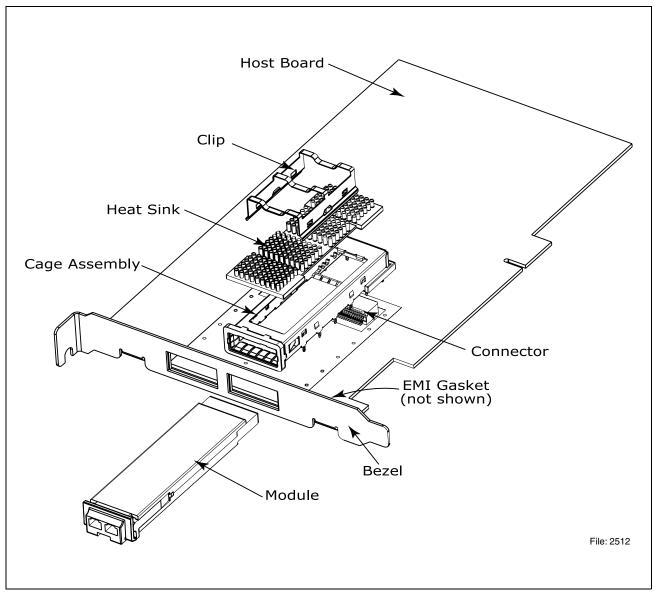


Figure 9 PCI Card Application

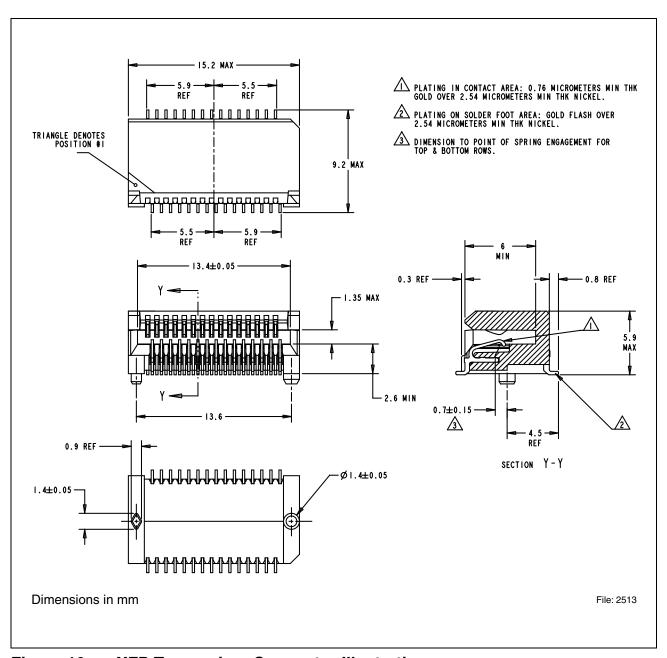


Figure 10 XFP Transceiver Connector Illustration

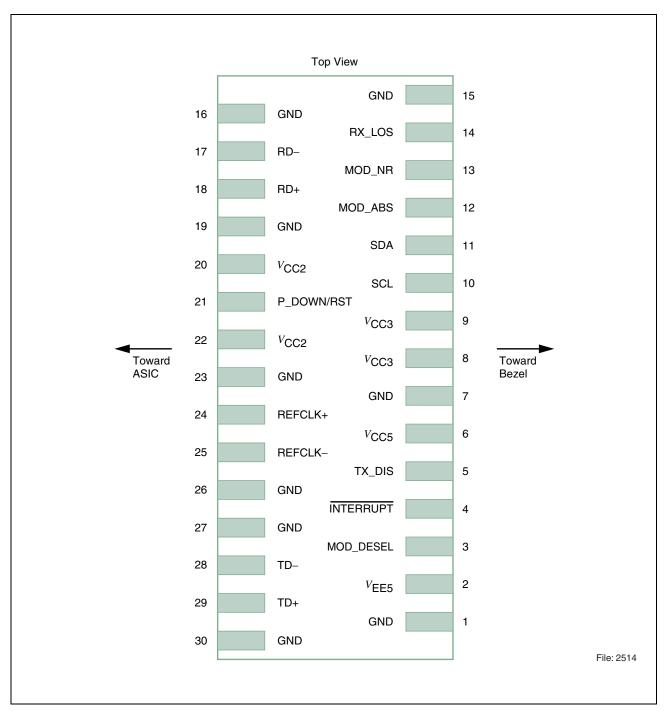


Figure 11 Host PCB XFP Pinout

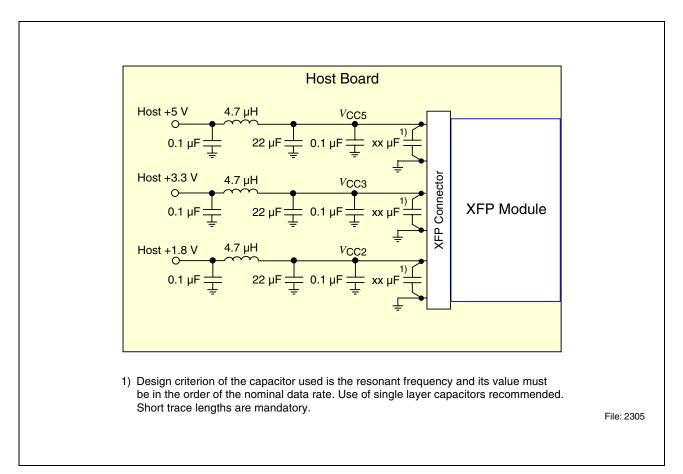


Figure 12 Recommended Host Board Supply Filtering Network

Package Outlines

Package Outlines

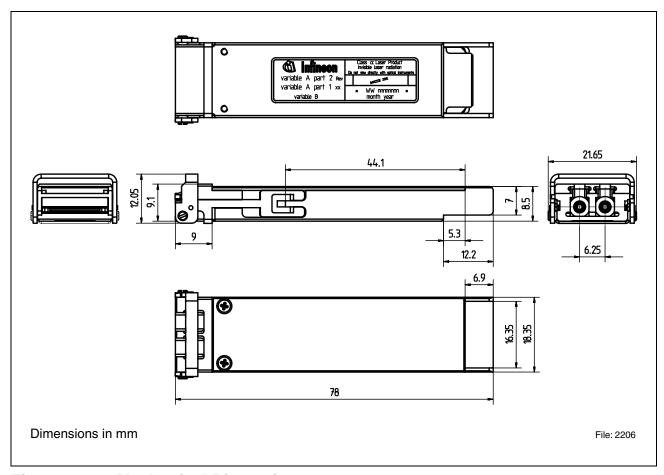


Figure 13 Mechanical Dimensions

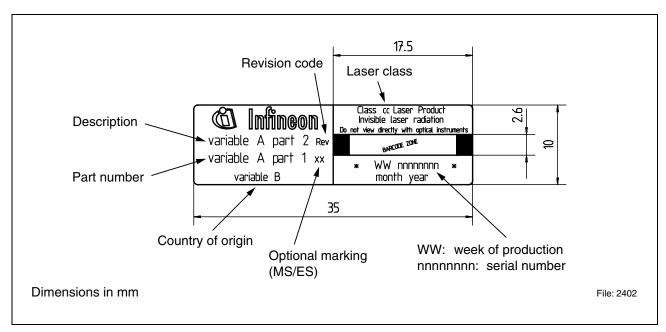


Figure 14 Label Description

Package Outlines

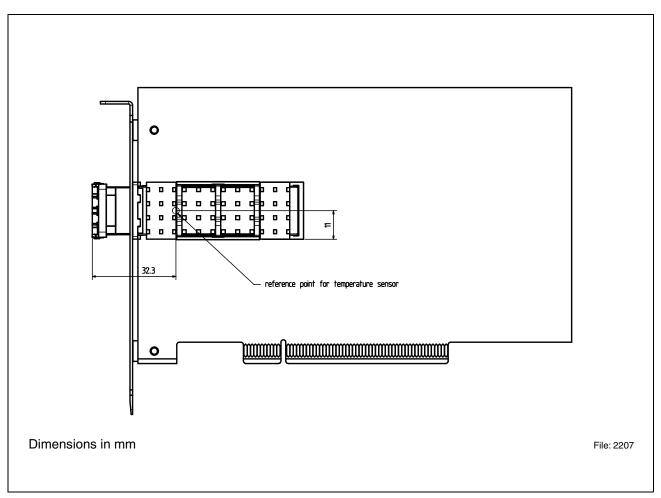


Figure 15 XFP Temperature Reference Point

V23833-Fx105-B001 V23833-Fx105-B002

Revision	History:	2004-06-04	DS0	
Previous	Version:	none		
Page	Subjects (major changes since last revision)			

Edition 2004-06-04

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany
© Infineon Technologies AG 2004. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.